Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Commun ; 12(1): 6103, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475296

ABSTRACT

Multiple SARS-CoV-2 variants of concern (VOCs) have been emerging and some have been linked to an increase in case numbers globally. However, there is yet a lack of understanding of the molecular basis for the interactions between the human ACE2 (hACE2) receptor and these VOCs. Here we examined several VOCs including Alpha, Beta, and Gamma, and demonstrate that five variants receptor-binding domain (RBD) increased binding affinity for hACE2, and four variants pseudoviruses increased entry into susceptible cells. Crystal structures of hACE2-RBD complexes help identify the key residues facilitating changes in hACE2 binding affinity. Additionally, soluble hACE2 protein efficiently prevent most of the variants pseudoviruses. Our findings provide important molecular information and may help the development of novel therapeutic and prophylactic agents targeting these emerging mutants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/isolation & purification , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/ultrastructure , Spodoptera , Surface Plasmon Resonance , Virus Attachment , Virus Internalization
2.
mBio ; 12(5): e0181321, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462901

ABSTRACT

Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 µg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19. IMPORTANCE Vaccination is essential to reduce disease severity and limit the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Protein-based vaccines are useful to vaccinate the world population and to boost immunity against emerging variants. Their safety profiles, production costs, and vaccine storage temperatures are advantageous compared to mRNA and adenovirus vector vaccines. Here, we use the versatile and scalable baculovirus expression vector system to generate a two-component nanoparticle vaccine to induce potent neutralizing antibody responses against SARS-CoV-2 variants. These nanoparticle vaccines can be quickly adapted as boosters by simply updating the antigen component.


Subject(s)
Antibodies, Neutralizing/metabolism , Nanoparticles/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/immunology , Female , Glycosylation , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Sf9 Cells , Viral Vaccines/immunology
3.
Nat Commun ; 12(1): 5652, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440473

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/metabolism , CHO Cells , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Epitopes/immunology , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Pandemics/prevention & control , Protein Multimerization , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
4.
Biotechnol Bioeng ; 118(10): 4129-4137, 2021 10.
Article in English | MEDLINE | ID: covidwho-1310445

ABSTRACT

Serology testing for COVID-19 is important in evaluating active immune response against SARS-CoV-2, studying the antibody kinetics, and monitoring reinfections with genetic variants and new virus strains, in particular, the duration of antibodies in virus-exposed individuals and vaccine-mediated immunity. In this study, recombinant S protein of SARS-CoV-2 was expressed in Rachiplusia nu, an important agronomic plague. One gram of insect larvae produces an amount of S protein sufficient for 150 determinations in the ELISA method herein developed. We established a rapid production process for SARS-CoV-2 S protein that showed immunoreactivity for anti-SARS-CoV-2 antibodies and was used as a single antigen for developing the ELISA method with high sensitivity (96.2%) and specificity (98.8%). Our findings provide an efficient and cost-effective platform for large-scale S protein production, and the scale-up is linear, thus avoiding the use of complex equipment like bioreactors.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/biosynthesis , Animals , Larva/metabolism , Larva/virology , Nucleopolyhedroviruses , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , SARS-CoV-2/metabolism , Sf9 Cells , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spodoptera
5.
Eur J Immunol ; 51(9): 2296-2305, 2021 09.
Article in English | MEDLINE | ID: covidwho-1258058

ABSTRACT

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the results of SARS-CoV-2 RBD, the serological response of SARS-CoV-2 NTD is less cross-reactive with SARS-CoV, a pandemic strain that was identified in 2003. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers a supplementary strategy for serology testing, it may not be suitable as an immunogen for vaccine development.


Subject(s)
COVID-19/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Cross Reactions/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Pandemics/prevention & control , Protein Binding/immunology , Sf9 Cells , Vero Cells
6.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: covidwho-1247308

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tetanus Toxoid/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Female , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Domains , Rats , Recombinant Fusion Proteins/genetics , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Tetanus Toxoid/genetics , Vero Cells
7.
Cell Rep ; 35(8): 109173, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1227991

ABSTRACT

Individuals with the 2019 coronavirus disease (COVID-19) show varying severity of the disease, ranging from asymptomatic to requiring intensive care. Although monoclonal antibodies specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified, we still lack an understanding of the overall landscape of B cell receptor (BCR) repertoires in individuals with COVID-19. We use high-throughput sequencing of bulk and plasma B cells collected at multiple time points during infection to characterize signatures of the B cell response to SARS-CoV-2 in 19 individuals. Using principled statistical approaches, we associate differential features of BCRs with different disease severity. We identify 38 significantly expanded clonal lineages shared among individuals as candidates for responses specific to SARS-CoV-2. Using single-cell sequencing, we verify the reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identify the natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in some individuals. Our results provide insights important for development of rational therapies and vaccines against COVID-19.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Cross Reactions , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19/genetics , Epitopes , High-Throughput Nucleotide Sequencing , Humans , Severity of Illness Index , Sf9 Cells , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology
8.
Nat Immunol ; 22(7): 820-828, 2021 07.
Article in English | MEDLINE | ID: covidwho-1225511

ABSTRACT

Efficient immune responses against viral infection are determined by sufficient activation of nucleic acid sensor-mediated innate immunity1,2. Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains an ongoing global pandemic. It is an urgent challenge to clarify the innate recognition mechanism to control this virus. Here we show that retinoic acid-inducible gene-I (RIG-I) sufficiently restrains SARS-CoV-2 replication in human lung cells in a type I/III interferon (IFN)-independent manner. RIG-I recognizes the 3' untranslated region of the SARS-CoV-2 RNA genome via the helicase domains, but not the C-terminal domain. This new mode of RIG-I recognition does not stimulate its ATPase, thereby aborting the activation of the conventional mitochondrial antiviral-signaling protein-dependent pathways, which is in accordance with lack of cytokine induction. Nevertheless, the interaction of RIG-I with the viral genome directly abrogates viral RNA-dependent RNA polymerase mediation of the first step of replication. Consistently, genetic ablation of RIG-I allows lung cells to produce viral particles that expressed the viral spike protein. By contrast, the anti-SARS-CoV-2 activity was restored by all-trans retinoic acid treatment through upregulation of RIG-I protein expression in primary lung cells derived from patients with chronic obstructive pulmonary disease. Thus, our findings demonstrate the distinctive role of RIG-I as a restraining factor in the early phase of SARS-CoV-2 infection in human lung cells.


Subject(s)
COVID-19/immunology , DEAD Box Protein 58/immunology , Lung/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , A549 Cells , Animals , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Dogs , HEK293 Cells , Humans , Interferon Type I/immunology , Interferons/immunology , Lung/virology , Madin Darby Canine Kidney Cells , Pulmonary Disease, Chronic Obstructive/immunology , RNA-Dependent RNA Polymerase/immunology , Sf9 Cells , Signal Transduction/immunology , Vero Cells , Viral Proteins/immunology , Interferon Lambda
9.
Viruses ; 12(9)2020 09 22.
Article in English | MEDLINE | ID: covidwho-973229

ABSTRACT

Coronaviruses (CoVs) are enveloped, positive sense, single strand RNA viruses that cause respiratory, intestinal and neurological diseases in mammals and birds. Following replication, CoVs assemble on intracellular membranes including the endoplasmic reticulum Golgi intermediate compartment (ERGIC) where the envelope protein (E) functions in virus assembly and release. In consequence, E potentially contains membrane-modifying peptides. To search for such peptides, the E coding sequence of Mouse Hepatitis Virus (MHV) was inspected for its amino acid conservation, proximity to the membrane and/or predicted amphipathic helices. Peptides identified in silico were synthesized and tested for membrane-modifying activity in the presence of giant unilamellar vesicles (GUVs) consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), sphingomyelin and cholesterol. To confirm the presence of membrane binding peptides identified in the context of a full-length E protein, the wild type and a number of mutants in the putative membrane binding peptide were expressed in Lenti-X-293T mammalian and insect cells, and the distribution of E antigen within the expressing cell was assessed. Our data identify a role for the post-transmembrane region of MHV E in membrane binding.


Subject(s)
Murine hepatitis virus/chemistry , Peptides/chemistry , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Animals , Cell Line , Coronavirus Infections , Humans , Intracellular Membranes/metabolism , Mice , Murine hepatitis virus/genetics , Murine hepatitis virus/metabolism , Mutation , Peptides/chemical synthesis , Peptides/metabolism , Sf9 Cells , Spodoptera , Unilamellar Liposomes/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
10.
Molecules ; 25(22)2020 Nov 18.
Article in English | MEDLINE | ID: covidwho-934509

ABSTRACT

Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of the MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29-766) produced in insect cells. Purification used differential ammonium sulphate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion-exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor-binding domain (RBD) were measured using surface plasmon resonance and ELISA. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity >30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected by surface plasmon resonance or ELISA. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.


Subject(s)
Angiotensin-Converting Enzyme 2/isolation & purification , Dipeptidyl Peptidase 4/isolation & purification , Spike Glycoprotein, Coronavirus/isolation & purification , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cloning, Molecular , Dipeptidyl Peptidase 4/biosynthesis , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Humans , Kinetics , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sf9 Cells , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Surface Plasmon Resonance
11.
Emerg Microbes Infect ; 9(1): 2076-2090, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-913103

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic was the result of the rapid transmission of a highly pathogenic coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is no efficacious vaccine or therapeutic. Toward the development of a vaccine, here we expressed and evaluated as potential candidates four versions of the spike (S) protein using an insect cell expression system: receptor binding domain (RBD), S1 subunit, the wild-type S ectodomain (S-WT), and the prefusion trimer-stabilized form (S-2P). We showed that RBD appears as a monomer in solution, whereas S1, S-WT, and S-2P associate as homotrimers with substantial glycosylation. Cryo-electron microscopy analyses suggested that S-2P assumes an identical trimer conformation as the similarly engineered S protein expressed in 293 mammalian cells but with reduced glycosylation. Overall, the four proteins confer excellent antigenicity with convalescent COVID-19 patient sera in enzyme-linked immunosorbent assay (ELISA), yet show distinct reactivities in immunoblotting. RBD, S-WT and S-2P, but not S1, induce high neutralization titres (>3-log) in mice after a three-round immunization regimen. The high immunogenicity of S-2P could be maintained at the lowest dose (1 µg) with the inclusion of an aluminium adjuvant. Higher doses (20 µg) of S-2P can elicit high neutralization titres in non-human primates that exceed 40-times the mean titres measured in convalescent COVID-19 subjects. Our results suggest that the prefusion trimer-stabilized SARS-CoV-2 S-protein from insect cells may offer a potential candidate strategy for the development of a recombinant COVID-19 vaccine.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 , COVID-19 Vaccines , Cell Line , Coronavirus Infections/immunology , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Macaca fascicularis , Mice , Mice, Inbred BALB C , Neutralization Tests , Peptidyl-Dipeptidase A/metabolism , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2 , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Vaccination , Viral Envelope Proteins/immunology
12.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: covidwho-827743

ABSTRACT

TER94 is a multifunctional AAA+ ATPase crucial for diverse cellular processes, especially protein quality control and chromatin dynamics in eukaryotic organisms. Many viruses, including coronavirus, herpesvirus, and retrovirus, coopt host cellular TER94 for optimal viral invasion and replication. Previous proteomics analysis identified the association of TER94 with the budded virions (BVs) of baculovirus, an enveloped insect large DNA virus. Here, the role of TER94 in the prototypic baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) life cycle was investigated. In virus-infected cells, TER94 accumulated in virogenic stroma (VS) at the early stage of infection and subsequently partially rearranged in the ring zone region. In the virions, TER94 was associated with the nucleocapsids of both BV and occlusion-derived virus (ODV). Inhibition of TER94 ATPase activity significantly reduced viral DNA replication and BV production. Electron/immunoelectron microscopy revealed that inhibition of TER94 resulted in the trapping of nucleocapsids within cytoplasmic vacuoles at the nuclear periphery for BV formation and blockage of ODV envelopment at a premature stage within infected nuclei, which appeared highly consistent with its pivotal function in membrane biogenesis. Further analyses showed that TER94 was recruited to the VS or subnuclear structures through interaction with viral early proteins LEF3 and helicase, whereas inhibition of TER94 activity blocked the proper localization of replication-related viral proteins and morphogenesis of VS, providing an explanation for its role in viral DNA replication. Taken together, these data indicated the crucial functions of TER94 at multiple steps of the baculovirus life cycle, including genome replication, BV formation, and ODV morphogenesis.IMPORTANCE TER94 constitutes an important AAA+ ATPase that associates with diverse cellular processes, including protein quality control, membrane fusion of the Golgi apparatus and endoplasmic reticulum network, nuclear envelope reformation, and DNA replication. To date, little is known regarding the role(s) of TER94 in the baculovirus life cycle. In this study, TER94 was found to play a crucial role in multiple steps of baculovirus infection, including viral DNA replication and BV and ODV formation. Further evidence showed that the membrane fission/fusion function of TER94 is likely to be exploited by baculovirus for virion morphogenesis. Moreover, TER94 could interact with the viral early proteins LEF3 and helicase to transport and further recruit viral replication-related proteins to establish viral replication factories. This study highlights the critical roles of TER94 as an energy-supplying chaperon in the baculovirus life cycle and enriches our knowledge regarding the biological function of this important host factor.


Subject(s)
Adenosine Triphosphatases/metabolism , Nucleocapsid/metabolism , Nucleopolyhedroviruses/physiology , Virus Replication , Animals , Cell Nucleus/virology , Cytoplasm/virology , DNA Helicases/metabolism , DNA, Viral/biosynthesis , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Sf9 Cells/virology , Vacuoles/virology , Viral Proteins/metabolism , Virion
13.
Cell ; 182(3): 722-733.e11, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-628738

ABSTRACT

Vaccines are urgently needed to control the ongoing pandemic COVID-19 and previously emerging MERS/SARS caused by coronavirus (CoV) infections. The CoV spike receptor-binding domain (RBD) is an attractive vaccine target but is undermined by limited immunogenicity. We describe a dimeric form of MERS-CoV RBD that overcomes this limitation. The RBD-dimer significantly increased neutralizing antibody (NAb) titers compared to conventional monomeric form and protected mice against MERS-CoV infection. Crystal structure showed RBD-dimer fully exposed dual receptor-binding motifs, the major target for NAbs. Structure-guided design further yielded a stable version of RBD-dimer as a tandem repeat single-chain (RBD-sc-dimer) which retained the vaccine potency. We generalized this strategy to design vaccines against COVID-19 and SARS, achieving 10- to 100-fold enhancement of NAb titers. RBD-sc-dimers in pilot scale production yielded high yields, supporting their scalability for further clinical development. The framework of immunogen design can be universally applied to other beta-CoV vaccines to counter emerging threats.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Severe acute respiratory syndrome-related coronavirus/immunology , Universal Design , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/chemistry , COVID-19 , COVID-19 Vaccines , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/virology , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Binding , Protein Interaction Domains and Motifs/immunology , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Sf9 Cells , Specific Pathogen-Free Organisms , Spodoptera , Transfection , Vaccination/methods , Vero Cells , Viral Vaccines
14.
Cell Rep ; 31(9): 107725, 2020 06 02.
Article in English | MEDLINE | ID: covidwho-276452

ABSTRACT

The World Health Organization has declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, a pandemic. There is currently a lack of knowledge about the antibody response elicited from SARS-CoV-2 infection. One major immunological question concerns antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by analyzing plasma from patients infected by SARS-CoV-2 or SARS-CoV and from infected or immunized mice. Our results show that, although cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses may be rare, indicating the presence of a non-neutralizing antibody response to conserved epitopes in the spike. Whether such low or non-neutralizing antibody response leads to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding antigenicity differences between SARS-CoV-2 and SARS-CoV but also has implications for immunogen design and vaccine development.


Subject(s)
Antibody Formation , COVID-19/immunology , Cross Reactions , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens/immunology , COVID-19/blood , COVID-19/virology , COVID-19 Serological Testing , Chlorocebus aethiops , Epitopes/immunology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Neutralization Tests , Protein Binding , Protein Domains , Severe Acute Respiratory Syndrome/blood , Severe Acute Respiratory Syndrome/virology , Sf9 Cells , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
15.
J Biol Chem ; 295(20): 6785-6797, 2020 05 15.
Article in English | MEDLINE | ID: covidwho-52576

ABSTRACT

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Betacoronavirus/physiology , Models, Molecular , SARS-CoV-2 , Sf9 Cells , Spodoptera
16.
J Biol Chem ; 295(15): 4773-4779, 2020 04 10.
Article in English | MEDLINE | ID: covidwho-1988

ABSTRACT

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Middle East Respiratory Syndrome Coronavirus/enzymology , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Coronavirus/enzymology , Ebolavirus/enzymology , Gene Expression , Nucleic Acid Synthesis Inhibitors/chemistry , RNA , RNA-Dependent RNA Polymerase/genetics , Sf9 Cells , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL